Carbon sequestration via wood burial
نویسنده
چکیده
To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink.It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 +/- 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized.Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.
منابع مشابه
Refining Carbon Sequestration Estimates of Seagrass Meadows in Tampa Bay
As of 2012, there were an estimated 14,243 ha of seagrass meadows in Tampa Bay. Seagrass meadows are the dominant blue carbon habitat in Tampa Bay, compared to the estimated 6,127 ha of mangroves and 1,779 ha of saltmarsh. However, and unlike mangroves and saltmarshes, the entirety of carbon fixation, growth and decay in seagrass meadows occurs in a submerged environment. While rates of primary...
متن کاملAssessing Excess Carbon Emissions and Soil Toxicity as Unintended Consequences in Applying Biochar as a Geoengineering Scheme
Executive Summary In the years since the Industrial Revolution, atmospheric carbon dioxide levels have steadily risen, causing an associated increase in global warming. In an attempt to remedy some of the effects caused by global warming, various geoengineering schemes have been put forth as possible solutions in resolving the global warming problem. A large portion of these geoengineering solu...
متن کاملPhytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering
Photosynthetic assimilation of atmospheric carbon dioxide by land plants offers the underpinnings for terrestrial carbon (C) sequestration. A proportion of the C captured in plant biomass is partitioned to roots, where it enters the pools of soil organic C and soil inorganic C and can be sequestered for millennia. Bioenergy crops serve the dual role of providing biofuel that offsets fossil-fuel...
متن کاملExport from Seagrass Meadows Contributes to Marine Carbon Sequestration
Seagrasses export a substantial portion of their primary production, both in particulate and dissolved organic form, but the fate of this export production remains unaccounted for in terms of seagrass carbon sequestration. Here we review available evidence on the fate of seagrass carbon export to conclude that this represents a significant contribution to carbon sequestration, both in sediments...
متن کاملOcean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.
For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carbon Balance and Management
دوره 3 شماره
صفحات -
تاریخ انتشار 2008